Secondary Math 2

Unit 2 - Introduction to Functions
PRACTICE TEST

1. Identify each of the four functions represented in the table as linear, absolute value, quadratic, or exponential.

x	$a(x)$	$b(x)$	$c(x)$	$d(x)$
-3	-2.5	0.01	8	25
-2	-3	0.1	-2	17
-1	-3.5	1	-8	9
0	-4	10	-10	1
1	-3.5	100	-8	-7
2	-3	1000	-2	-15
3	-2.5	10000	8	-23

2. Graph the function: $f(x)=\frac{4}{3} x+1$

3. Graph the function: $f(x)=3^{x}+1$

4. Graph the function: $f(x)=|x+1|-2$

5. Given $f(x)=x^{2}$, explain the transformation given by $-f(x+5)-13$.
6. Use the graph of the function to identify intervals of increasing or decreasing.

7. Identify the vertex of $f(x)=\frac{1}{2}|x|+8$ and whether it represents a minimum or maximum.
8. Identify the vertex and y-intercept of the graph of the function $y=-4(x-1)^{2}+6$.
9. Label each function as odd, even, or neither.
A. $f(x)=x^{2}+7$
B. $f(x)=5 x^{3}+3$
C. $f(x)=4 x$
10. Label each function's graph as odd, even, or neither.
A.

B.

C.
11. Use the graph to estimate the average rate of change of the function on the interval [-3, 2].

Use the following information for problems 12 and 13: The height of a softball thrown into the air with an initial velocity of $72 \mathrm{ft} . / \mathrm{sec}$. can be modeled by the equation $h(t)=-16 t^{2}+72 t+7$. In this model, t represents time in seconds, and $h(t)$ represents the height of the ball in feet.
12. Find the average rate of change of $h(t)$ on the interval [1, 2].
13. What is the meaning of the rate of change found in problem 12 ?
14. The function $P(t)=300(1+0.06)^{t}$ is used to predict the current balance in Alex's bank account, where $P(t)$ is the current balance t years since 2010. (i.e. $t=0$ is 2010, $t=1$ is 2011, etc.). Predict his account balance in 2020.

Use the following information for problems 15 and 16: Geraldo goes every year to a cliff diving competition in Acapulco. The competitors dive off of cliffs of varying heights into the ocean. His height above the ocean as a function of time can be modeled by the function $h(t)=-16(t-1)^{2}+135$, where t is time in seconds and $h(t)$ is height above the ocean in feet.
15. How long did it take for Geraldo to reach his maximum height above the ocean?
16. At that time, how far above the ocean did he find himself?

