OBJECTIVE
other.

NOTES Logarithmic Equality:

If $\log _{b} x=\log _{b} y$ then, $x=y$.
Exponential Equality:
If $b^{x}=b^{y}$ then, $x=y$.
Recall:
$\log _{b} x=y$ is true if and only if $b^{y}=x$
Solving Logarithms or Exponentials:

1. Isolate the log or the exponential term.
2. Perform the inverse operation.
3. Simplify and isolate variable.

Applications for Logarithms/ Exponents:

Interest: $A=P\left(1+\frac{r}{n}\right)^{n t}$ or $A=P e^{r t}$
Mortgage: $P=\frac{r M}{1-\left(1+\frac{r}{n}\right)^{-n t}} \div n$
Population Growth/Decay: $P_{1}=P_{0}(1 \pm r)^{t}$ or $P_{1}=P_{0} e^{r t}$
Earthquake measurement (Richter Scale):

$$
R=0.67 \log (0.37 E)+1.46
$$

Heating/Cooling: $T=\left(T_{0}-T_{R}\right) e^{-r t}+T_{R}$
Sound levels: $d=10 \log \left(\frac{P}{P_{0}}\right)$
PH levels: $p H=-\log (H+)$
And more...

EXAMPLES

Solve each equation.

1. $\log _{7} x=2$
2. $\log (x-7)=\log 4$
3. $2^{x}=2^{4 x+3}$
4. $27^{2}=9^{x+1}$
5. $\ln (x-3)+\ln (x+4)=3 \ln 2$
6. $\log _{4}(x+5)=-1$
7. $-5 \log (2 n+7)=-13$
8. $1+4 \log _{7}(x-8)=13$
9. If Hank invests $\$ 100$ dollars at 8% interest compounded monthly, how long will it take before he has $\$ 150$? How long would it take if it was compounded continuously?
10. You are cooking stew. When you remove it from the stove, its temperature is $212^{\circ} \mathrm{F}$. The room temperature is $70^{\circ} \mathrm{F}$, and the cooling rate of the stew is $r=0.046$. How long will it take to cool the stew to a serving temperature of $100^{\circ} \mathrm{F}$?
