1. I can use the rules of Logarithms to evaluate basic Logarithms.
2. I can apply the rules of Logarithms

NOTES

Logarithms:
$\log _{b} x=c$ if and only if \qquad
Basic Properties of Logarithms:
$\log _{b} 1=$
$\log _{b} b=$
$\log _{b} b^{c}=$
$b^{\log _{b} x}=$

Change of base:
$\log _{b} x=$
Rules of Logarithms:
Product Rule: $\log _{b}(x y)=$
Quotient Rule: ${\operatorname{lo~} g_{b}\left(\frac{x}{y}\right)=}^{x}$
Power Rule: $\log _{b} x^{c}=$

EXAMPLES

Rewrite each of the following in exponential form.

1. $\log _{4} 64=3$
$\log _{5} \frac{1}{25}=-2$
$\log _{65} 1=0$

Rewrite each of the following in logarithmic form.
2. $3^{4}=81$
$10^{-2}=\frac{1}{100}$
$6^{1}=6$

Use the properties of logarithms to evaluate the expressions without a calculator.
3. $\log 10^{-4}$
$3^{\ln 6}$
$\log _{3} 1$
$\log _{50} 50$

Evaluate.
4. $\log _{2} 5$
$\log _{4} 16$
$\log 65$
$\ln 6$

Expand the following expressions.
5. $\log \frac{a^{4} b}{c^{5}}$
$\ln \sqrt{m^{3} n}$
$\log \frac{2 w^{4} h^{3}}{a^{2} b^{5}}$

Condense the following into a single logarithm.
6. $\ln (x+1)-3 \ln (x-2)$

$$
\ln a-\frac{3}{2} \ln b+7 \ln c-5 \ln d
$$

