OBJECTIVE

1. I can determine the inverse of a function given in multiple forms.

NOTES Inverse Functions: functions in which all input and output pairs are reversed. The inverse of $f(x)$ is denoted $f^{-1}(x)$. Inverse functions have the following properties:

- $\quad f$ and f^{-1} are reflections of each other across the line $y=x$.
- For every point (a, b) on f, there is a point (b, a) on f^{-1}.
- The domain of f is the range of f^{-1}; the range of f is the domain of f^{-1}.
- Both functions must be one-to-one*.
*ONE-TO-ONE FUNCTION: a function that, when graphed, passes the horizontal line test.

Note that a function such as $f(x)=x^{2}$, which is not one-toone, can be made one-to-one by restricting its domain. For example, $f(x)=x^{2}, x \geq 0$ is now a one-to-one function.

Sters for Finding the Inverse Function

1. Substitute x for $f(x)$, substitute y for x.
2. Solve for y.
3. Substitute $f^{-1}(x)$ for y.
4. Check for necessary domain restrictions.

EXAMPLES
Find the Inverse:
$1 f(x)=5 x+7$
$2 f(x)=x^{2}-6 x+13$ when $x \leq 3$.
3. $f(x)=\frac{4 x+3}{3 x-1}$
4.

x	$f(x)=x^{3}-4 x+1$
-7	-314
-6	-191
-5	-104
-4	-47
-3	-14
-2	1
-1	4

6. Find a domain that will make this function invertible.
$f(x)=x^{2}-4 x-1$

Find the inverse of each function.

1. $f(x)=-6 x+8$
2. $f(x)=3 x-5$
3. $f(x)=x^{2}-4 x-12, x \geq 2$
4. $f(x)=\sqrt{x+4}$
5. $f(x)=\frac{3 x+5}{x-1}$
6. $f(x)=\frac{7 x-6}{3 x+2}$
7. $f(x)=\frac{1}{2} x^{3}-3$
8. $f(x)=(x-2)^{3}+5$
9. $f(x)=-2 \sqrt[3]{x-5}+7$
10. a.

x	$f(x)$
-2	0.5
-1	1.5
0	4.5
1	13.5
2	40.5

b.

x	$f(x)$
5	1
6	3
9	4
14	5
21	6

11. a.

b.

c.

x	$f(x)$
-17	1.7
-12	1.6
-9	1.5
-7	1.4
-3	1

c.

For each function find a domain that will make the function invertible.
12. $f(x)=2 x^{2}-3$
13. $f(x)=(x+5)^{2}+4$
14. $f(x)=x^{2}+12 x+32$

