Secondary Math II Quarter 1 Final PRACTICE TEST	
1. Simplify. $3x^2 + 6x - (x+5)$	(LESSON) (1-1)
2. Find the product. $(6x+1)(4x-3)$	(1-1)
3. Simplify. $(2xy^6)^3$	(1-2)
4. Simplify. $\left(\frac{3x^7}{5}\right)^2$	(1-2)
5. Simplify. $5\sqrt{63}$	(1-3)
6. Simplify. $(16x^{36})^{\frac{1}{2}}$	(1-3)
7. Find the sum. $9\sqrt{3} + 11\sqrt{3}$	(1-4)
8. Find the product. $(4+5i)(7-3i)$	(1-5)

x	h(x)	9.	Using the table for $h(x)$, determine what type of function it is.	(2-1)
-3	14			
-2	11			
-1	8			
0	11	10.	Using the table for $h(x)$, what is the average rate of change on the interval [-3, 2]?	(2-4)
1	14			
2	17			

Use for problems 9 & 10.

11. Describe the transformation of
$$F(x) = -(x-2)^2 + 1$$
 compared with $f(x) = x^2$ (2-2)

12. Identify the vertex of the function.
$$g(x) = 2|x+4|$$
 (2-3)

13. For the function graphed below, determine intervals of increasing and decreasing.

14. Label each function graph as odd even or neither.

Use the following information for problems 15 & 16.

A certain ice cream bar company has constructed the following function: $P(x) = -400(x-2)^2 + 1600$. In this model, x is the price of an ice cream bar, and P(x) is the company's weekly profit.

- 15. At what **price** should the company sell each ice cream bar to earn a maximum weekly profit? (2-5)
- 16. What is the company's maximum weekly profit?

(2-4)

(2-5)

(2-3)