OBJECTIVE

NOTES

(Contains one inequality symbol.
ex. $2 x+6 \leq 5$

COMMON TYPES OF INEQUALITIES

COMPOUND (AND)

${ }_{\square}$ Contains two inequality symbols written as one "three-sided" inequality.
ex. $-4<2 x+6 \leq 5$

COMPOUND (OR)

(Composed of two simple inequalities joined with 'or'.
Tox. $2 x+6 \leq 5$ or $x-4>5$

GENERAL RULES

${ }^{(\pi)}$ Solve inequalities the same way you would solve equations, treating the inequality symbol like an equal sign.
When solving the "three-sided" inequalities, isolate x in the middle, and perform any operations to all 3 sides.

- If you multiply or divide both sides of an inequality by a negative, you must reverse the inequality symbol(s).

EXAMPLES Solve each inequality. Write your answer in interval notation.
(1.) $3 x+7 \leq-2$
(2.) $5-4 x \leq 25$
(3.) $-3 \leq 2 x+1<7$
(4.) $-7<5-3 x \leq 5$
(5.) $3 x<-9$ or $x-8>-1$
(6.) $6-x \leq 2$ or $2 x \leq x+2$
\qquad
[SHOW YOUR WORK]
Solve each inequality. Write your answer in interval notation.

1. $4 x+7>23$
2. $8-x \leq 10$
3. $5 x+1<3 x+7$
4. $-3(x+2) \geq 15$
5. $-1<3-2 x \leq 11$
6. $6 \leq 5 x-9 \leq 21$
7. $-15<3+x<-3$
8. $-2 \leq 7-3 x \leq 10$
9. $x+1<13$ or $x-1 \geq 13$
10. $8 x \leq 32$ or $-x<-15$
11. $3 x+5 \leq 23$ or $-4 x+1<-39$
12. $2 x<6$ or $-x+4 \leq-5$
13. Susan is planning a wedding reception. The bride and groom estimate that at least 150 guests will attend. The reception hall has a maximum capacity of 300 people, which would include guests, the bride and groom, the photographer, the 5 caterers, and the 4 members of the band. Provide Susan with an interval for the possible number of guests at the reception.

Isolate the indicated variable in the equation.
REVIEW 4-1
14. Isolate $b: d=\sqrt{b^{2}-4 a c}$
15. Isolate $h: S=w h+(w+h) q$

Find all real solutions to the system.
16. $\left\{\begin{array}{l}y=8 x+17 \\ y=x^{2}+2 x+1\end{array}\right.$
17. $\left\{\begin{array}{l}y=3 x-10 \\ y=2 x^{2}-5 x-4\end{array}\right.$
18. Solve the inequality. $x^{2}-7 x-18 \leq 0$

