OBJECTIVE

NOTES

1. SWBAT solve systems of equations in two variables involving one linear and one non-linear equation.

Systems of Equations: Two Ways to Solve
 BELOW YOU CAN SEE TWO WAYS TO SOLVE THE SAME EXAMPLE PROBLEM.

ALGEBRAICALLY
 Solve the system: $\left\{\begin{array}{l}y=x+2 \\ y=x^{2}-2 x-8\end{array}\right.$

Solve linear equation for one variable.
(This one's already solved for y.)
Substitute into the non-linear equation.
Now solve for x.
It's quadratic, so set equal to zero.
Use factoring or quadratic formula
Solve for each x-value.
Plug each x-value into original linear equation.
Solve for y.

The ordered pair answers are then:

GRAPHICALLY

Solve the system: $\left\{\begin{array}{l}y=x+2 \\ y=x^{2}-2 x-8\end{array}\right.$
In order to graph the functions, they will both need to be solved for y, which is a possible disadvantage. Another trial will be getting an appropriate viewing window on the calculator. The intersections are the solutions to the system.

GRAPH

To find the intersections, press 2nd TRACE 5:intersect. Use arrow left or right to move cursor toward one intersection or the other. Then press ENTER three times. Repeat to find other intersection.

EXAMPLES
(1.) Solve the system: $\left\{\begin{array}{l}y=x-1 \\ x^{2}+y^{2}=25\end{array}\right.$
(2.) Solve the system: $\left\{\begin{array}{l}y=x+4 \\ y=-x^{2}\end{array}\right.$

Find all real solutions for each system, if they exist.

1. $\left\{\begin{array}{l}y-x=0 \\ x^{2}+y^{2}=32\end{array}\right.$
2. $\left\{\begin{array}{l}y=x-9 \\ y=x^{2}+1\end{array}\right.$
3. $\left\{\begin{array}{l}y=5 \\ y=x^{2}+4 x\end{array}\right.$
4. $\left\{\begin{array}{l}y=6 x-9 \\ y=x^{2}\end{array}\right.$
5. $\left\{\begin{array}{l}2 y+x=8 \\ y=-x^{2}+8 x\end{array}\right.$
6. $\left\{\begin{array}{l}x+y=7 \\ x^{2}+y^{2}=25\end{array}\right.$
7. $\left\{\begin{array}{l}y=3 x+5 \\ y+2 x^{2}=1\end{array}\right.$
8. $\left\{\begin{array}{l}y=x+12 \\ y=x^{2}+2 x+6\end{array}\right.$
9. $\left\{\begin{array}{l}y=4 x-18 \\ y=2 x^{2}-8 x\end{array}\right.$
10. $\left\{\begin{array}{l}4 y-4 x=15 \\ y=x^{2}-4 x+6\end{array}\right.$
11. $\left\{\begin{array}{l}x=6 \\ x^{2}+y^{2}=61\end{array}\right.$
12. $\left\{\begin{array}{l}y=-7 x-7 \\ y=-x^{2}-5 x-9\end{array}\right.$
13. $\left\{\begin{array}{l}y=9 x-2 \\ y=x^{2}+2 x-20\end{array}\right.$
14. Find the lengths of the 2 legs of the right triangle shown if the triangle's perimeter is 28.

Hint: use Pythagorean Theorem

12

