1. SWBAT factor quadratic expressions where $a=1$.
A GAME OF NUMBERS
Before we can begin factoring quadratics, you must become proficient at playing a certain game
of numbers. In this game, you must think of two numbers that produce a certain product and a
certain sum. Here's an example:
What two numbers produce a product of $\mathbf{1 8}$ and a sum of $\mathbf{1 1 ?}$
If the answer 2 and 9 was not obvious, try making a list of factor pairs for the product number.

PRACTICE THE GAME: What two numbers produce a...
...product of 36 and a sum of 15 ?
...product of 6 and a sum of -5 ?
...product of 15 and a sum of 16 ?
...product of -48 and a sum of 13 ?
...product of -20 and a sum of 8 ?
...product of -30 and a sum of -1 ?
...product of 75 and a sum of 20 ?
...product of -36 and a sum of 0 ?

FACTORING QUADRATICS

Now that you know the game, let's apply it to factoring quadratics. Here are the steps:

1. Given: $x^{2}+b x+c \quad$ Think: what two numbers produce a product of \boldsymbol{c} and a sum of \boldsymbol{b} ?

Let's call the two numbers n and m.
2. Write the factors as $(x+n)(x+m)$.

Please note that the x^{2} coefficient is 1 . Next lesson will address the case when it is not 1 .
Here's an example with actual numbers for b and c :
Factor: $x^{2}+4 x-12 \quad$ Think: what two numbers produce a product of -12 and a sum of 4 ? The numbers are 6 and -2 .
The factors are $(x+6)(x-2)$.
(It does not matter the order of the factors)

Factor.
(1.) $x^{2}+3 x+2$
(2.) $x^{2}-2 x-15$
(3.) $x^{2}-x-20$
(4.) $x^{2}-8 x+12$
(5.) $x^{2}+11 x+24$
(6.) $x^{2}+5 x-36$
(7.) $x^{2}-36 x+99$
(8.) $x^{2}+14 x-72$
\qquad

Factor each quadratic expression.

1. $x^{2}+15 x+14$
2. $x^{2}-7 x+12$
3. $x^{2}-x-6$
4. $x^{2}+5 x-14$
5. $x^{2}+10 x+16$
6. $x^{2}-11 x+18$
7. $x^{2}-7 x+10$
8. $x^{2}+6 x+5$
9. $x^{2}-7 x-8$
10. $x^{2}+3 x-10$
11. $x^{2}-4 x-21$
12. $x^{2}+15 x+50$
13. $x^{2}-16 x+55$
14. $x^{2}+15 x+54$
15. $x^{2}-16 x+60$
16. $x^{2}+5 x-84$
17. $x^{2}+11 x-80$
18. $x^{2}-19 x-66$
19. $x^{2}+7 x-30$
20. $x^{2}-31 x+108$

Factor each quadratic expression completely. Hint: Look for a GCF first.
21. $3 x^{2}-15 x-18$
22. $5 x^{2}-5 x-10$
23. $-2 x^{2}+6 x+8$
24. $4 x^{2}-16 x+16$

Factor each quadratic expression.
(This might be review from Lesson 3-2, but the number game still applies. Can you see how?)
25. $x^{2}-9$
26. $x^{2}-5 x$
27. $x^{2}-49$
28. $x^{2}-20 x$
29. $x^{2}-144$
30. $x^{2}-36 x$
31. Given the formula: $a^{2}+b^{2}=(a+b i)(a-b i)$, factor the following completely: $x^{4}-81$

