1. SWBAT recognize the forms of features of quadratics.

WHAT ARE QUADRATICS?

Any expression, equation, or function in terms of x, for which 2 is the highest degree of x. $\left(x^{2}\right)$

EXPRESSION: (no equal sign)
EQUATION: (equal sign)
FUNCTION: (equal sign with y or $f(x)$)

Example: $3 x^{2}+2 x-1$
Example: $3 x^{2}+2 x=1$
Example: $f(x)=3 x^{2}+2 x-1$

FORM \& FUNCTION

Quadratics can be written in three useful forms as follows:

POLYNOMIAL FORM $f(x)=a x^{2}+b x+c$	INTERCEPT FORM $f(x)=a(x-p)(x-q)$	VERTEX Form $f(x)=a(x-h)^{2}+k$
$\underbrace{}_{\text {What information does }}$		
The c is the y-intercept: $(0, c)$ The a is the vertical stretch. The sign of a indicates whether the graphed parabola opens up $(+)$ or down (-).	The p and the q are x-intercepts: $(p, 0),(q, 0)$. In the formula they are negative, so use the opposite. The a does the same as in polynomial form.	The vertex of the graphed parabola is found at (h, k). Use the opposite for h. The axis of symmetry is at $x=h$. The a does the same job.

EXAMPLES

(1.) Which expressions are quadratic? Circle all that qualify.
A) $2 x^{2}-x$
B) $x(x+3)(x+2)$
C) $6(2 x+4)-9$
D) $(x-5)^{2}$
2. Identify key features of each quadratic function.
A) $f(x)=(x-3)(x+5)$
B) $f(x)=-(x-6)^{2}+9$
C) $f(x)=2 x^{2}+12 x+10$

Graphing

The graph below illustrates how the parabola of a quadratic function is graphed with NO STRETCHING.

Starting from the vertex, for each horizontal change of 1 , the vertical change is a sequence of odd numbers.

The pattern is repeated symmetrically on the other side of the vertex.

If necessary, multiply the odd numbers by a vertical stretch factor a.

Label each expression, equation, or function as Quadratic (Q) or Non-Quadratic (NQ).

1. $x^{2}+8 x$
2. $7 x^{2}=98+2 x$
3. $x(x+11)^{2}=1$
4. $y=(x-8)(x+1)(x-2)$
5. $x(x-3)=0$
6. $f(x)=2(x-5)^{2}$

Identify key features of each quadratic function, including: x-intercepts, y-intercept, vertex, \& axis of symmetry.
7. $f(x)=x^{2}-2 x-8$
8. $f(x)=x^{2}+8 x-20$
9. $f(x)=2 x^{2}+16 x+14$
10. $f(x)=-(x+1)(x-9)$
11. $f(x)=(x+7)(x+8)$
12. $f(x)=3(x-10)(x-2)$
13. $f(x)=(x-2)^{2}$
14. $f(x)=(x+6)^{2}-1$
15. $f(x)=-(x-4)^{2}+9$

Graph each quadratic function.
16. $f(x)=(x-2)^{2}-4$

17. $f(x)=-2(x+1)^{2}+1$

18. $f(x)=(x-2)(x+2)$

19. Suppose a fidget spinner company has constructed an average cost function $C(x)=0.05(x-250)^{2}+3$, where $C(x)$ is the average cost per spinner when producing x fidget spinners. Find and interpret the following function features in context: vertex and y-intercept.

